Ellipse Worksheet

acol6706
May 2017

1 Introduction

The equation of an ellipse can be described like this

$$
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a
$$

Bringing the second term to the right and squaring both sides, the equation becomes

$$
(x+c)^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2}
$$

Solving for the square root terms, the equation becomes

$$
\begin{aligned}
& \sqrt{(x-c)^{2}+y^{2}}=-\frac{1}{4 a}\left(x^{2}+2 x c+c^{2}+y^{2}-4 a^{2}-x^{2}+2 x c-c^{2}-y^{2}\right) \\
& \sqrt{(x-c)^{2}+y^{2}}=-\frac{1}{4 a}\left(4 x c-4 a^{2}\right) \\
& \sqrt{(x-c)^{2}+y^{2}}=a-\frac{c}{a} x
\end{aligned}
$$

Squaring both sides of the equation, we get

$$
x^{2}-2 x c+c^{2}+y^{2}=a^{2}-2 c x+\frac{c^{2}}{a^{2}} x^{2}
$$

Grouping the x terms, we get

$$
x^{2} \frac{a^{2}-c^{2}}{a^{2}}+y^{2}=a^{2}-c^{2}
$$

which cam be written as

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1
$$

Let $b^{2}=a^{2}-c^{2}$
The equation can be written in the familiar form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

The standard form of an ellipse centered at (h, k) is the equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

a is equal to half the length of the horizontal axis, while b is equal to half the length of the vertical axis, one-half its shortest diameter.

Open Desmos in your computers.
Using Desmos, input the equation

$$
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a
$$

into your Desmos graph. Set a equal to 8 and c equal to 4 .
Your graph should look like this.

Next, input the equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

, setting h and k equal to 0 , into your Desmos graph. Your screen should now look like this:

The equations are exactly the same; adjusting the h and k sliders, the top ellipse moves, while the bottom one stays constant. This is a graphical proof that the equation

$$
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a
$$

and

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where $b^{2}=\left(a^{2}-c^{2}\right)$ are equal.

Problems

Problem 1: An ellipse has a center at $(0,0)$, foci at $(-4,0)$ and $(4,0)$ and the sum of the distances between any point on the ellipse and its foci is 16 . What is the equation of the ellipse?

Problem 2: An ellipse has a center at $(0,0)$, foci at $(-6,0)$ and $(6,0)$ and the sum of the distances between any point on the ellipse and its foci is 18 . What is the equation of the ellipse?

Problem 3: An ellipse has a center at $(0,0)$, foci at $(-12,0)$ and $(12,0)$ and the sum of the distances between any point on the ellipse and its foci is 32 . What is the equation of the ellipse?

Problem 4: An ellipse has a center at (1,2). Its horizontal diameter, or major axis is 8 units, and its vertica diameter is 6 units. The major axis is horizontal: the ellipse is wider than it is tall. What is the equation of the ellipse?

Problem 5: An ellipse has a center at ($-1,3$). Its longest diameter, or major axis is 10 units, and its shortest diameter is 4 units. The major axis is vertical: the ellipse is taller than it is wide. What is the equation of the ellipse?

Problem 6: An ellipse has a center at (2,-3). Its longest diameter, or major axis is 10 units, and its shortest diameter is also 10 units. What is the equation of the ellipse?

Solutions

Solution 1:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1
$$

Because $2 a$, the sum of the distances between any point on the ellipse and its foci is $16, a=8$. The foci of this ellipse are located at $(-c, 0),(c, 0) ; \mathrm{c}=4$. The equation of our ellipse is

$$
\frac{x^{2}}{8^{2}}+\frac{y^{2}}{8^{2}-4^{2}}=1
$$

or

$$
\frac{x^{2}}{64}+\frac{y^{2}}{48}=1
$$

Solution 2 Because $2 a$, the sum of the distances between any point on the ellipse and its foci is $18, a=9$. The foci of this ellipse are located at $(-c, 0),(c, 0) ; \mathrm{c}=6$. The equation of our ellipse is

$$
\frac{x^{2}}{9^{2}}+\frac{y^{2}}{9^{2}-6^{2}}=1
$$

or

$$
\frac{x^{2}}{81}+\frac{y^{2}}{45}=1
$$

Solution 3 Because $2 a$, the sum of the distances between any point on the ellipse and its foci is $32, a=16$. The foci of this ellipse are located at $(-c, 0),(c, 0) ; \mathrm{c}=12$. The equation of our ellipse is

$$
\frac{x^{2}}{16^{2}}+\frac{y^{2}}{16^{2}-12^{2}}=1
$$

or

$$
\frac{x^{2}}{256}+\frac{y^{2}}{112}=1
$$

Solution 4 The center of this ellipse is $(1,2)$, so $h=1$ and $k=2$. a is equal to half of the length of the horizontal axis, or $(0.5)(8)=4 . a=4 . b$ is equal to half the length of the vertical axis; $b=3$. Using the equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

with these values, we get

$$
\frac{(x-1)^{2}}{16}+\frac{(y-2)^{2}}{9}=1
$$

Solution 5 The center of this ellipse is $(-1,3)$, so $h=-1$ and $k=3$. a is equal to half of the length of the horizontal axis, or $(0.5)(4)=2 . a=2 . b$ is equal to half the length of the vertical axis; $b=5$. Using the equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

with these values, we get

$$
\frac{(x+1)^{2}}{4}+\frac{(y-3)^{2}}{25}=1
$$

Solution 6 The center of this ellipse is $(-2,3)$, so $h=-2$ and $k=3$. a is equal to half of the length of the horizontal axis, or $(0.5)(10)=5 . a=5 . b$ is equal to half the length of the vertical axis; $b=5$. Using the equation

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

with these values, we get

$$
\frac{(x+2)^{2}}{25}+\frac{(y-3)^{2}}{25}=1
$$

